K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc MFB=góc MCE

Xét ΔMFB và ΔMCE có

góc MFB=góc MCE

góc M chung

=>ΔMFB đồng dạng với ΔMCE

=>MF/MC=MB/ME

=>MF*ME=MB*MC

7 tháng 5 2022

a/

Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp

b/ Xét tg MEB và tg MCF có

\(\widehat{EMC}\) chung

\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)

=> tg MEB đồng dạng với tg MCF (g.g.g)

\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)

 

 

 

a: góc BFC=góc BEC=90 độ

=>BCEF nội tiếp

góc AEH+góc AFH=180 dộ

=>AEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

=>BK//CH

góc ACK=1/2*sđ cung AK=90 độ

=>CK//BH

=>BHCK là hình bình hành

=>H đối xứng K qua M

1: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

2: Xét ΔKBF và ΔKEC có

góc KBF=góc KEC

góc K chung

=>ΔKBF đồng dạng với ΔKEC

=>KB/KE=KF/KC

=>KB*KC=KE*KF

a) Xét tứ giác BCEF có 

\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)