K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC

Chứng minh: Gọi H là hình chiếu của C trên  AB

\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)

Theo định lý Pytago, ta có: BC2=BH2+CH(2)

Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)

\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)

Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O) 

Chứng minh được MA=MB+MC

=> MA2=MB2+MC2+2.MB.MC

=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)

Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2

=> MB2+MC2+MB.MC=3R2

Từ (1) (2) => MA2+MB2+MC2=6R2

27 tháng 6 2017

a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Lại có:

+ O là trọng tâm tam giác nên Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

+ Bán kính đường tròn ngoại tiếp tam giác:

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Ta có: NA2 + NB2 + NC2 ngắn nhất

⇔ NO2 ngắn nhất vì R không đổi

⇔ NO ngắn nhất

⇔ N là hình chiếu của O trên d.

20 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

28 tháng 9 2018

 Áp dụng định lí sin trong tam giác ta có a sin A = 2 R . Suy ra:

  R = a 2 sin 60 ° = a 2.   3 2 = a 3 3 .

Chọn A.

DD
23 tháng 5 2021

\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)

\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)

\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)

10 tháng 12 2016

Gọi cạnh tam giác ABC là x

theo công thức tính diện tích S = p.r với p là nửa chu vi, r là bán kính đường tròn nội tiếp. 
Ta có \(\frac{x^2\sqrt{3}}{4}=\frac{3x}{2}.1\Rightarrow x=2\sqrt{3}\) (cm)

Suy ra bán kính đường tròn ngoại tiếp : \(R=\frac{AB.BC.AC}{4.S_{ABC}}\frac{x^3}{\frac{4.x^2\sqrt{3}}{4}}=\frac{x}{\sqrt{3}}=2\) (cm)

26 tháng 12 2019

Theo định lí sin trong tam giác ta có:

a sin A = 2 R ⇒ R = a 2 sin A = 6 2. sin 60 0 = 2 3

Chọn B.