Giải phương trình:
a, \(16^x+7.4^x+5=3.2^{x+2}\)
b, \(2^{x^2+3}+3^{x^2}=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^x+7.4^x+5=3.2^x+2\)
<=> \(8.2^x+7.2.2^x+5=3.2^x+2\)
<=> \(8.2^x+7.2.2^x+5-3.2^x-2=0\)
<=> \(2^x\left(8+7.2-3\right)-3=0\)
<=> \(2^x.19=3\)
<=> \(2^x=\frac{3}{19}\)
a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)
a)\(\Leftrightarrow\)\(x^2-4x-21=0\)
\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)
\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)
\(\Leftrightarrow\)\((x-7)(x+3)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)
b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)
\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)
\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
a, 0,5x.(2x - 9) = 1,5x.(x - 5)
<=> x2 - 4,5x = 1,5x2 - 7,5x
<=> 0,5x2 + 3x = 0
<=> 0,5x.( x + 6 ) = 0
<=> x = 0 hoặc x + 6 = 0
<=> x = 0 hoặc x = -6
Vậy....
#Đức Lộc#
Làm thử nha :v
a) 0,5x.(2x - 9) = 1,5x.(x - 5)
<=> 0,5x.(2x - 9) - 1,5x.(x - 5) = 1,5x.(x - 5) - 1,5x.(x - 5)
<=> 0,5x.(2x - 9) - 1,5x.(x - 5) = 0
<=> -x(0,5x - 3) = 0
=> x = 0 hoặc 6
b) 5(x - 1) - (2x - 5) = 16 - x
<=> 3x = 16 - x
<=> 3x + x = 16
<=> 4x = 16
<=> x = 16 : 4
=> x = 4
a) 16 - 3x = 4
<=> 3x = 12
<=> x = 4
Vậy x = 4 là nghiệm phương trình
b) (x2 - 4x + 5)2 - (x - 1)(x - 3) = 4
<=> (x2 - 4x + 5)2 - 4 - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 5 - 2)(x2 - 4x + 5 + 2) - (x - 1)(x - 3) = 0
<=> (x2 - 4x + 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 7) - (x - 1)(x - 3) = 0
<=> (x - 1)(x - 3)(x2 - 4x + 6) = 0
<=> (x - 1)(x - 3) = 0 (Vì x2 - 4x + 6 > 0 \(\forall x\))
<=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy x \(\in\left\{1;3\right\}\)là nghiệm phương trình
a)16-3x=4
3x=16-4
3x=12
x=4
Vậy x=4
b)(x2-4x+5)2-(x-1).(x-3)=4
[(x-2)2+1]2-[(x-2)+1].[(x-2)-1]=4
=>(x-2)2+2.(x-2).1+1-(x-2)2-12=4
2(x-2)=4
=>x-2=2
=>x=4
Vậy ....................
Chú bn học tốt
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
a/\(\Leftrightarrow\left(2^4\right)^x+7.\left(2^x\right)^2+5=3.2^x.4\)
Đặt \(2^x=y\) PT trở thành:
\(y^4+7y^2+5=12y\)
\(\Leftrightarrow y^4+7y^2-12y+5=0\)
Giải típ