K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

mong mọi người giải giúp em vs gianroigianroi

27 tháng 9 2021

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)

Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)

PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)

+ Với a=1

\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)

+ Với b=1

\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

27 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)

Thì được:

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)

Làm tiếp

NV
24 tháng 11 2019

a/ ĐKXĐ: \(-2\le x\le5\)

\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(x+2\right)\left(5-x\right)}-4=0\)

Đặt \(\sqrt{x+2}+\sqrt{5-x}=a>0\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}\)

\(\Rightarrow a+\frac{a^2-7}{2}-4=0\)

\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}=1\)

\(\Leftrightarrow-x^2+3x+10=1\)

\(\Leftrightarrow x^2-3x-9=0\)

b/ \(\Leftrightarrow\sqrt{x+1}-\sqrt{4-x}+2\left(5+2\sqrt{\left(x+1\right)\left(4-x\right)}\right)=17\)

Đặt \(\sqrt{x+1}-\sqrt{4-x}=a\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{5-a^2}{2}\)

\(a+2\left(5+5-a^2\right)=17\)

\(\Leftrightarrow-2a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}-\sqrt{4-x}=-1\\\sqrt{x+1}-\sqrt{4-x}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+1=\sqrt{4-x}\\2\sqrt{x+1}=2\sqrt{4-x}+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2+2\sqrt{x+1}=4-x\\4x+4=25-4x+12\sqrt{4-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1-x\left(x\le1\right)\\12\sqrt{4-x}=8x-21\left(x\ge\frac{21}{8}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\left(1-x\right)^2\\144\left(4-x\right)=\left(8x-21\right)^2\end{matrix}\right.\)

NV
24 tháng 11 2019

c/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

\(a^2-1=3\left(a-1\right)\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-x^2}=\frac{a^2-1}{2}=0\\\sqrt{x-x^2}=\frac{a^2-1}{2}=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-x^2=0\\x-x^2=\frac{9}{4}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5+2x}=a\ge0\\\sqrt{5-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}\left(3a-1\right)\left(3b-1\right)=16\\a^2+b^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3ab-\left(a+b\right)=5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3ab-5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\)

\(\Rightarrow\left(3ab-5\right)^2-2ab=10\)

\(\Leftrightarrow9\left(ab\right)^2-32ab+15=0\Rightarrow\left[{}\begin{matrix}ab=3\\ab=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(ab\right)^2=9\\\left(ab\right)^2=\frac{25}{81}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}25-4x^2=9\\25-4x^2=\frac{25}{81}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=\frac{500}{81}\end{matrix}\right.\)

24 tháng 6 2023

\(\left(2-\sqrt{5}\right)x^2+\left(6-\sqrt{5}\right)x-8+2\sqrt{5}=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x^2-\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)x-(8-2\sqrt{5})=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x\left(x-1\right)+\left(8-2\sqrt{5}\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(2-\sqrt{5}\right)x=-8+2\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+2\sqrt{5}}{2-\sqrt{5}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6+4\sqrt{5}\end{matrix}\right.\)

Vậy \(S=\left\{1;6+4\sqrt{5}\right\}\)