Phân tích đa thức thành nhân tử:\(A=x^4-13x^3y^3+4y^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4y-3x^3y^2+3x^2y^3+xy^4=xy\left(x^3-3x^2y+3xy^2+y^3\right)\)
phân tích đa thức thành nhân tử
a) 4x^2+8xy-3x-6y
b)x^4y-3x^3y^2+3x^2y^3+xy^4
c)x^3-5x^2-14x
d)x^4+4y^4
\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)
\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)
\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
\(1,\)
\(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(2,\)
\(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
\(3,\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)[3\left(x+y\right)-2\left(x-y\right)]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(4,\)
\(x^2-y^2-2x+2y\)
\(=x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)