K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

a

Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)

Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)

suy ra đpcm

b

\(n^5+96n=n\left(n^4+96\right)\)

Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)

Do \(n^4+96>1\Rightarrow n=1\)

Thay vào ta thấy thỏa mãn

Vậy n=1

10 tháng 4 2020

a, =2020^4038 -1

Vì  \(2020 \equiv 1 \pmod{3}\)

->\(2020^(4038) \equiv 1 \pmod{3}\)

->2020^4038 -1 chia hết cho 3 -> dpcm

14 tháng 4 2020

a) \(\left(2020^{2019}+1\right)\left(2020^{2019}-1\right)=\left(2020^{2019}\right)^2-1=2020^{4038}-1\)

Ta có: 2020 = 1 mod 3

\(\Rightarrow2020^{2019}\equiv1mod3\)

\(\Rightarrow2020^{4038}-1\equiv0mod3\)

=> đpcm

11 tháng 5 2020

Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:

\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)

Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho

Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)

\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)

\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương

( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)

Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)

Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)

Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)

Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)

Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)

( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)

\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)

\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

2 tháng 3 2020

cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn