Cho 3 số x;y;z thoả mãn các điều kiện sau: \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\) và 3x-2y+5z=96. Tìm x;y;z
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)
\(\Rightarrow\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{5z-6y+6x-4z+4y-5x}{4+5+6}=\frac{x-2y+z}{4+5+6}\)
\(\Rightarrow\frac{x}{4}=\frac{-2y}{5}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{12}=\frac{-2y}{5}=\frac{5z}{30}\)
\(\Rightarrow\frac{3x}{12}=\frac{-2y}{5}=\frac{5z}{30}=\frac{3x-2y+5z}{12-5+30}=\frac{96}{37}\)
Mình ko chắc nhé bạn!Nhưng bạn cứ tick cho mình nha!
Lỡ sai thì bạn đừng trách mình nha!
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}=0\)
\(\begin{matrix}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\\\frac{4y-5x}{6}=0\end{matrix}\Rightarrow\)\(\begin{matrix}5z-6y=0\\6x-4z=0\\4y-5x=0\end{matrix}\)\(\Rightarrow\begin{matrix}\frac{y}{5}=\frac{z}{6}\\\frac{x}{4}=\frac{z}{6}\\\frac{x}{4}=\frac{y}{5}\end{matrix}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\begin{matrix}\frac{x}{4}=3\\\frac{y}{5}=3\\\frac{z}{6}=3\end{matrix}\Rightarrow\begin{matrix}x=12\\y=15\\z=18\end{matrix}\)
KL: Vậy ......................