K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

1.      Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

2.      ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

3. Theo trên Ta có => ÐD1= ÐD2 => DM là tia phân giác của góc ADE.

                                      ~Học tốt!~

1: góc MDC=1/2*sđ cung CM=90 độ

góc BDC=góc BAC=90 độ

=>BADC nội tiếp

2: góc DEM=góc DCA

góc DCA=góc AEM

=>góc DEM=góc AEM

=>EM là phân giác của góc AED

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Hình vẽ:

a: Xét (O) có

ΔMDC nội tiếp

MC là đường kính

=>ΔMDC vuông tại D

góc CAB=góc CDB=90 đọ

=>ABCD nội tiếp

b: góc SCA=góc ADB

góc ADB=góc ACB

=>góc SCA=góc ACB

=>CA là phân giác của góc SCB

a: góc CDM=1/2*sđ cung CM=90 độ

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

c: Gọi F là giao của AB và CD

góc MEC=1/2*sđ cung MC=90 độ

=>ME vuông góc CB(1)

Xet ΔFCB có

CA,BD là đường cao

CA cắt BD tại M

=>M là trực tâm

=>FM vuông góc BC(2)

Từ (1), (2) suy ra F,M,E thẳng hàng