Giải bất phương trình sau:
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}< \frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Giúp em vs ạ!! Em đang cần gấp!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
\(\Leftrightarrow\left(2x-1\right)\left(...\right)=0\Rightarrow x=\frac{1}{2}\)
\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\\ \Leftrightarrow\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}-\frac{2x-1}{2017}+\frac{2x-1}{2016}=0\\ \Leftrightarrow\left(2x-1\right)\left(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\right)=0\)
mà \(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\ne0\)
thì \(2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\frac{1}{2}\)
vậy \(x=\frac{1}{2}\)
ĐKXĐ: \(x\ne\left\{0;\frac{1}{2}\right\}\)
\(\Leftrightarrow\frac{3+x}{2x-1}-\frac{2x}{x\left(2x-1\right)}-3-\frac{x-4}{x}=0\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(2x-1\right)}-\frac{2x}{x\left(2x-1\right)}-\frac{3x\left(2x-1\right)}{x\left(2x-1\right)}-\frac{\left(x-4\right)\left(2x-1\right)}{x\left(2x-1\right)}=0\)
\(\Leftrightarrow x^2+3x-2x-6x^2+3x-2x^2+9x-4=0\)
\(\Leftrightarrow-7x^2+13x-4=0\)
\(\Rightarrow x=\frac{13\pm\sqrt{57}}{14}\)
Kết quả xấu quá, chắc bạn ghi ko đúng đề
a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)
\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)
\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)
\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.x.2+2^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) và \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)
= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)
= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)
VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)
= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)
Mà \(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\) và \(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)
nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Chúc bn học tốt!!