Cho hình bình hành ABCD có tọa độ ba đỉnh là : A(3 ; -2) , B(14 ; -2) , D(0 ; -8) . Tính tọa độ C (... ; ...) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đoạn thẳng AB là: \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\sqrt{\left[-1-\left(-4\right)\right]^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\)
Mà CD = AB (vì tứ giác ABCD là hình bình hành) \(\Rightarrow CD=\sqrt{13}\)
Tương tự, ta cũng tính được độ dài đoạn AD là \(\sqrt{34}\)
Như vậy, ta có \(\hept{\begin{cases}CD=\sqrt{13}=\sqrt{\left(x_C-x_D\right)^2+\left(y_C-y_D\right)^2}\\AD=\sqrt{34}=\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{\left(1-x_D\right)^2+\left(1-y_D\right)^2}=\sqrt{13}\\\sqrt{\left(-1-x_D\right)^2+\left(6-y_D\right)^2}=\sqrt{34}\end{cases}}\)
Tới đây bạn tự giải nhé.
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
\(a,\Rightarrow C,A,D\) \(thẳng\) \(hàng\Rightarrow\overrightarrow{CA}+\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{DC}\)
\(D\left(x;y\right)\Rightarrow\overrightarrow{CA}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}-1-x=2\\-2-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)\(\Rightarrow D\left(-3;-2\right)\)
\(b,E\left(xo;yo\right)\Rightarrow\overrightarrow{AE}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}xo-1=-3\\yo+2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xo=-2\\yo=-7\end{matrix}\right.\)\(\Rightarrow E\left(-2;-7\right)\)
\(c,\Rightarrow G\left(xG;yG\right)\Rightarrow\left\{{}\begin{matrix}xG=\dfrac{1+2-1}{3}=\dfrac{2}{3}\\yG=\dfrac{-2+3-2}{3}=-\dfrac{1}{3}\end{matrix}\right.\)\(\Rightarrow G\left(\dfrac{2}{3};-\dfrac{1}{3}\right)\)
Chọn C.
Phương pháp:
ABCD là hình bình hành khi và chỉ khi A, B, C, D phân biệt, không thẳng hàng và
Chọn C
Phương pháp:
ABCD là hình bình hành khi và chỉ khi A, B, C, D phân biệt, không thẳng hàng và
Cách giải:
ABCD là hình bình hành
Từ giả thiết suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.
Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)
Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :
\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)
Từ đó tìm được x=2, c=3, d=2.
Vậy C(3;4), D(2;4)
cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4