K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 4 2020

Câu 2:

\(\Delta'=9-\left(m+7\right)=2-m\)

a/ Để pt có 2 nghiệm âm pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1+x_2< 0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\-6< 0\\m+7>0\end{matrix}\right.\) \(\Rightarrow-7< m< 2\)

b/ Để pt chỉ có 1 nghiệm

\(\Leftrightarrow\Delta'=0\Rightarrow2-m=0\Rightarrow m=2\)

c/ Do \(x_2\) là nghiệm của pt nên:

\(x_2^2+6x_2+m+7=0\) \(\Leftrightarrow x_2^2+7x_2+m+4=x_2-3\)

Thay vào bài toán:

\(\left(x_2-3\right)x_2+\left(x_1-3\right)x_1=44\)

\(\Leftrightarrow x_1^2+x_2^2-3\left(x_1+x_2\right)=44\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=44\)

\(\Leftrightarrow36-2\left(m+7\right)+18=44\)

\(\Leftrightarrow2m=-4\Rightarrow m=-2\)

29 tháng 5 2021

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

4 tháng 8 2017

x^2-3x-(m-1)=0(1)

a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0

9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.

>>>>Để(1) có 2 nghiệm phân biệt thì m>1.

b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6

>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1

-(m-1)=1>>>m=0.

Vậy m=0

NV
8 tháng 3 2023

a. Em tự giải

b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)

c.

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)

\(\Leftrightarrow m=\dfrac{71}{9}\)