1 . Cho tam giác ABC vuông tại A, điểm M nằm trên AC, đường tròn đừng kính CM cắt BC tại E, BM cắt đường tròn tại D.
a. CMR: Tứ giác BADC nt
b. DB là đưofng phân giác của góc EDA
c. CMR 3 đường thẳng BA, EM, CD đồng quy
2 .
Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
- Chứng minh tứ giác CEHD nội tiếp .
- Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
- Chứng minh ED = 1/2BC.
- Chứng minh DE là tiếp tuyến của đường tròn (O).
- Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.