K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc MDC=1/2*sđ cung CM=90 độ

góc BDC=góc BAC=90 độ

=>BADC nội tiếp

2: góc DEM=góc DCA

góc DCA=góc AEM

=>góc DEM=góc AEM

=>EM là phân giác của góc AED

 

20 tháng 4 2016

Hình bạn tự vẽ nha

a) Xét đường tròn đường kính MC

Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)

Hay góc BDC = 90 độ

Xét tứ giác BADC có 

Góc BAC =90 ĐỘ (GT)

Góc BDC =90 độ (cmt)

Mà hai đỉnh của góc này ở vị trí  kề nhau do đó tứ giác BADC nt đường tròn ĐK BC

tâm O của dt là trung điểm BC

b)Xét dt đk BC có 

Góc ADB=GÓC  ACB (hai góc nt cùng chắn cung AB)(1)

Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)

hay Góc BMN  = GÓC ABC (2) 

Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)

=> BD là phần giác góc ADN (đpcm)

c)Xét tam giác ABC có

AM=MC(GT)

OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)

=> OM lad đtb của tam giác ABC

Suy ra OM//AB (t/c Đtb)

Do đó Góc OMC = 90 độ

Suy ra OM là tt của dt dk MC

d)Xét dt dk MC có

Góc MNC = 90 dộ (góc nt chắn nửa dt)

Hay góc PNC =90 độ

Xét Tam giác BPC CÓ

BD vuông góc PC ( góc BDC =  90) (cmt)

AC vuông góc với PB (góc ABC =90)(GT)

Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC

Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)

Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng

--------------------------------------------------Hết------------------------------------------

Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp  ý kiến đẻ mình hoàn thiện hơn

a: Xét (CM/2) có

ΔMDC nội tiếp

MC là đường kính

Do đó: ΔMDC vuông tại D

Xét tứ giác ABCD có

góc CDB=góc CAB

Do đó: ABCD là tứ giác nội tiếp

b: \(\widehat{EDB}=\widehat{ACB}\)

\(\widehat{ADB}=\widehat{ACB}\)

DO đó: góc EDB=góc ADB

hay DB là phân giác của góc EDA

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

\(\widehat{CDB}=\widehat{CAB}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

b: \(\widehat{BCA}=\widehat{ADB}\)

mà \(\widehat{ADB}=\widehat{KCA}\)

nên \(\widehat{BCA}=\widehat{KCA}\)

hay CA là tia phân giác của góc KCB