A= 70(71^9+71^8+71^7+...+71^2+72)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=71^9+71^8+...+71^2+71+1\)
\(\Rightarrow71A=71^{10}+71^9+...+71^2+71\)
\(\Leftrightarrow70A=71^9-1\)
hay \(A=\dfrac{71^9-1}{70}\)
\(C=70\cdot A+1\)
\(=71^9-1+1=71^9\)
Đặt \(A=70\cdot\left(71^9+71^8+...+71^2+71+1\right)+1\)
Đặt \(B=71^9+71^8+...+71^2+71^1+71^0\)
\(\Leftrightarrow71B=71^{10}+71^9+...+71^3+71^2+71\)
\(\Leftrightarrow B=\dfrac{71^9-1}{70}\)
\(A=70\cdot B+1=71^9-1+1=71^9\)
Bạn sai đề rồi, phải là P = 70(71^9 + 71^8 + ... + 71^2 + 72) + 1 mới đúng
Ta có: P = 70(71^9 + 71^8 + ... + 71^2 + 72) + 1
= (71 - 1)(71^9 + 71^8 + ... + 71^2 + 71 + 1) + 1
= (71^10 - 1^10) + 1
= 71^10 -1 + 1
= 71^10 = (71^5)^2
Vậy P là một số chính phương.
k cho mik nha.
b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)
ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)
\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow\left(x+y\right)^2=z^2\)
\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)
Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)
a, (M-1)/70-71=m
m=(71^9+71^8....71+1)
71m=71^10+...71^2+71
70m=71^10-1
(M-1)/70=71^10+70
M-1=70(71^10+70)
M=70(71^10+70)-1
Đặt \(a=71,\) ta có :
\(P=\left(a-1\right)\left(a^9+a^8+a^7+...+a^2+a+1\right)+1\)
\(P=a^{10}-1+1\)
\(P=a^{10}\)
\(P=\left(a^5\right)^2\)
cho ta \(P=\left(71^5\right)^2\)
Vậy \(P\) là số chính pương .
Chúc bạn học tốt
Đặt B=719+718+717+...+712+71
71B=7110+719+718+717+...+712
71B-B=7110-71
70B=7110-71=>B=\(\frac{71^{10}-71}{70}\)
Ta có A=70.\(\frac{71^{10}-71}{70}\)
=7110-71
vậy còn 70