Cho tam giac ABC. Tren tia AB lay diem D sao cho AD= 2AB.Tren tia doi cua tia AC lay diem E sao cho AE = 2AC. Chung minh tam giac ADE dong dang voi tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go
Ta có: BC2 = AB2 + AC2
=> BC2 = 82 + 62
BC2 = 100
=> BC = 100−−−√=10(cm)100=10(cm)
b) Xét hai tam giác vuông ABE và ADE có:
AB = AD (gt)
AE: cạnh chung
Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)
Suy ra: BE = DE (hai cạnh tương ứng)
BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)
Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o
DEAˆ+DECˆ=180oDEA^+DEC^=180o
Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)
Suy ra: BECˆ=DECˆBEC^=DEC^
Xét hai tam giác BEC và DEC có:
BE = DE (cmt)
BECˆ=DECˆBEC^=DEC^ (cmt)
EC: cạnh chung
Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).
goi DE ∩∩ BC tại I
có AB = AD (gt)
=> CA là đường trung tuyến của ΔΔ ABC
có AE = 2 cm ( gt)
và AC = 6 cm (gt)
=> AE = 1313AC
=> E là trọng tâm của ΔΔ ABC
=> DE là đường trung tuyến còn lại
=> BI = CI ( theo tính chất đường trung tuyến )
=> I là trung điểm của BC
vậy DE đi qua trung điểm của BC