Rút gon biểu thức \(A=\frac{x^2+2x}{x^2-4x+4}:\left(\frac{x+2}{x}-\frac{1}{2-x}+\frac{6-x^2}{x^2-2x}\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DL
14 tháng 5 2018
ĐKXĐ: \(x\ne\pm2;x\ne0\)
\(A=\left[\frac{4x\left(x-2\right)}{x^2-4}-\frac{8x^2}{x^2-4}\right]:\left[\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right]\)
\(=\frac{-4x^2-8x}{x^2-4}:\frac{-x+3}{x\left(x-2\right)}\)
\(=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\frac{x\left(x-2\right)}{-x+3}\)
\(=\frac{4x^2}{x-3}\)
Vì \(4x^2\ge0\)với mọi x nên:
để A > 0 thì x - 3 >0 <=> x > 3
2 tháng 10 2020
\(A=\left(\frac{x^2+x+1}{x}+\frac{x+2}{x}-\frac{2-x}{x}\right)\frac{x}{x+1}=\frac{x^2+3x+1}{x+1}\)