K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

mọi người giúp mình với

 

9 tháng 9 2019

Giải bài 88 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật ⇔ EH ⊥ EF

⇔ AC ⊥ BD (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

⇔ EF = EH

⇔ AC = BD (Vì EF = AC/2, EH = BD/2)

c) EFGH là hình vuông

⇔ EFGH là hình thoi và EFGH là hình chữ nhật

⇔ AC = BD và AC ⊥ DB.

19 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

2 tháng 5 2020

Bài 1 : 

\(x^2y+4xy+4y=162x-162\)

\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)

\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)

Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)

\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0

\(\Rightarrow x+2\in\left\{27,9,3\right\}\)

\(\Rightarrow x\in\left\{25,7,1\right\}\)

\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)

\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)

2 tháng 5 2020

Bài 2 : 

a,

E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:

EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)

GH là đường trung bình trong tam giác DAC nên  \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)

Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành

b,

EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD