tìm m để 2 đường thẳng d1 : 7x=6y=2 và d2 :2x+2y=m cắt nhau tại 1 điểm trên trục oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành nên tung độ y = 0
Thay y=0 vào (d1) ta tìm được x = -3/2
Thay y=0 và x=-3/2 vào (d2) ta tìm được m = 4/3
Vậy với m = 4/3 thì (d1) và (d2) cắt nhau tại một điểm trên trục hoành
Giả sử hai đường thẳng ( d 1 ): 5x – 2y = 3; ( d 2 ): x + y = m cắt nhau tại điểm A(x, y).
Vì giao điểm A nằm trên trục Oy nên x = 0. Suy ra: A(0; y).
Khi đó điểm A(0; y) là nghiệm của hệ phương trình:
Vậy khi m = - 3/2 thì ( d 1 ): 5x – 2y = 3; (d2): x + y = m cắt nhau tại một điểm trên trục Oy.
Phương trình đường thẳng ( d 2 ): x + y = - 3/2
Đồ thị:
a: tọa độ giao điểm M là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2