Cho tứ giác ABCD có .Gọi E,F,G,H luần lượt là trung điểm của các cạnh AB,BC,CD,DA.O là 2 đường chéo
CHứng mỉnh rằng
a,OE+OF +OG+OH bằng nữa chu vi tứ giác ABCD,'
b,Tứ giác EFGH là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có
b. Có là hình bình hành ( dấu hiệu nhận biết )
Mặt khác là hình chữ nhật
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành
THam khảo nha :
Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.
Lời giải:
Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.
Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH. (1)MQ∥BH ; MQ=12BH. (1)
Ta có:
ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^
ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^
Do đó ˆBAH=ˆCAF.BAH^=CAF^.
Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)
⇒ˆFCA=ˆBHA⇒FCA^=BHA^
Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.
Khi đó ˆOCA=ˆIHOOCA^=IHO^
Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))
Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘
Do đó IH⊥IOIH⊥IO hay BH⊥CF. (2)BH⊥CF. (2)
Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH. (3)CF=BH. (3)
Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.
★★★★★★★★★★★★★★★★
Quay lại bài toán. Gọi MM là trung điểm ACAC
Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.
Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)
Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.
b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG
Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)
Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘
Do đó tam giác MPQMPQ vuông cân tại MM
Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.
Suy ra tứ giác MPNQMPNQ là hình vuông.
Vì E, F, G, H lần lượt là trung điểm các cạnh AB,BC,CD,DA nên EF, FG, GH, HE lần lượt là đường trung bình của tam giác ABC, BCD, ADC, ADB nên
EF//HG (cùng song song với AC)
HE//FG (cùng song song với BD)
Suy ra tứ giác EFGH là hình bình hành
Mà A C ⊥ B D (gt) ⇒ E F ⊥ F G
Suy ra EFGH là hình chữ nhật
Do đó S E F G H = H E . E F mà E F = 1 2 A C ; H E = 1 2 B D (tính chất đường trung bình)