Cho tam giác ABC có ba góc nhọn. Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E; BE cắt CF tại H. CMR:
a) Tứ giác AFHE nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác AFHE
b)) Tia AH cắt BC tại D. Cm : HE.HB = 2HD.HI
c) Cm: 4 điểm D,I,E,F cùng thuộc 1 đường tròn