Bài 2: Cho DEF cân tại D, đường cao DK, gọi I là trung điểm của DF, vẽ điểm H đối xứng với điểm K qua I. a) Chứng minh tứ giác DKFH là hình chữ nhật. b) Tứ giác DEKH là hình gì? Vì sao? c) Gọi A là điểm đối xứng với D qua K. Chứng minh tứ giác AEDF là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M trung điểm DF => MD=MF
K đối xứng với M qua I => KM=MI
=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)
Mà có ^I=90o ( DI là đường cao)
=> DKFI là hcn ( hbh có 1 góc _|_)
b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ
=> IK_|_DF => DKFI là hình vuông (theo dấu hiệu nhận bt)
Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF
=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )
Mà lại có DI là đường cao
=> \(\Delta\) DEF là \(\Delta\) vuông cân
Vậy \(\Delta\)DEF cần điều kiện DK_|_KF
b: Ta có: A và H đối xứng nhau qua DF
nên DF là đường trung trực của AH
=>B là trung điểm của AH và DF⊥AH tại B
Xét tứ giác DBAC có
\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)
Do đó: DBAC là hình chữ nhật
c: Xét ΔDEF có
A là trung điểm của EF
AB//DE
Do đó: B là trung điểm của DF
Xét tứ giac DAFH có
B là trung điểm của DF
B là trung điểm của AH
Do đó: DAFH là hình bình hành
mà AD=AF
nên DAFH là hình thoi
a, Xét tứ giác AHCK có:
I là trung điểm KH
I là trung điểm AC
Nên tứ giác AHCK là hình bình hành
Lại có: góc H=90 độ do AH là đường cao của tam giác ABC
Vậy tứ giác AHCK là hình chữ nhật
b, Xét tứ giác ABHK có:
AK//CH do H thuộc CB và CH//AK
KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH
Vậy tứ giác ABHK là hình bình hành
Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)
a) Vì ABCD là hcn => AB//CD; AB=CD
Mà E,F lần lượt là trung điểm của AB và CF
=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC
=> EA=FC;EA//FC
Do đó AECF là hbh ( 2 cạnh đối // và = nhau)
b)
Vì ABCD là hcn => AB//CD; AB=CD
Mà E,F lần lượt là trung điểm của AB và CF
=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF
=> EA=DF;EA//DF
=> AEFD là hbh ( ( 2 cạnh đối // và = nhau)
Lại có: ^ADF=90o ( ABCD là hcn)
Do đó: AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)
c) Vì A đối xứng với N qua D (gt)
=> AN là đường trung trực của ^MAF
=> MA=AF (1)
Vì M đối xứng với F qua D
<=>MF là đường trung trực của ^AMN
=>MA=MN (2)
<=> FM là đường trực của ^AFN
=>AF=NF (3)
Từ (1);(2) và (3) => AM=MN=NF=AF
Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)
d) ngu câu hình cuối nên bỏ đi để làm n'
mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ
a) Xét tứ giác AHCK ta có:
Vì O trung điểm AC
K đối xứng vs H qua O => O trung điểm HK
Mà AC và HK cắt nhau tại trung điểm O
=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)
Lại có ^AHC=90o ( AH là đường cao)
=> AHCK là hcn (hbh có 1 góc vuông)
b) Xét tứ giác ABMC có:
M đối xứng với A qua H => AM là đường trung trực
=> AB=AC (1)
Mặt khác:M đối xứng vs A qua H=> H trung điểm AM
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung tuyến của tam giác ABC
=>H là trug điểm BC (HB=HC)
mà AM và BC cắt nhau tại trug điểm H
Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)
Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)
c) Xét tứ giác ABHK có:
Vì HB=HC (cmt)
mà AK=HC ( AKHC là hcn)
=> AK=BH
Lại có AK//BC (AKHC là hcn)
=>AK//BH
Nên AKBH là hbh ( 2 cạnh đối // và = nhau)
d) VÌ HB=HC=BC/2 (cm câu a)
=> HC=6/2=3 cm
Áp dụng công thức tính S và hcn AKHC ta có:
SAKHC=AH.HC
=> SAKHC=4.3=12 (cm2)
Vậy SAKHC=12 cm2
a: Xét tứ giác DKFH có
I là trung điểm của DF
I là trung điểm của KH
Do đó: DKFH là hình bình hành
mà \(\widehat{DKF}=90^0\)
nên DKFH là hình chữ nhật