Các trường hợp bằng nhau của tam giác
Gọi M là trung điểm của cạch Bc của tam giác ABC, kẻ \(BH\perp AM\)và \(CK\perp AM\). Chứng minh:
a) BH // CK
b) M là trung điểm của HK
c) HC // BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\CK\perp AM\end{matrix}\right.\Rightarrow BH\) // CK
b) Xét \(\Delta BHM\) vuông tại H và \(\Delta CKM\) vuông tại K có:
BM = CM (suy từ gt)
\(\widehat{BMH}=\widehat{CMK}\left(đ^2\right)\)
\(\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\)
\(\Rightarrow HM=KM\)
\(\RightarrowĐPCM.\)
c) Xét \(\Delta CHM;\Delta BKM:\)
BM = CM
\(\widehat{CMH}=\widehat{BMK}\left(đđ\right)\)
HM = KM (câu b)
=> ...
=> \(\widehat{CHM}=\widehat{BKM}\)
mà 2 góc ở vị trí so le trog nên HC // BK.
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=góc HCB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC can tại I
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
c: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a) Ta có: \(BH\perp AM\) ; \(CK\perp AM\)
=> BH // CK
b) Có: BH // CK (câu a)
=> \(\widehat{HBM}=\widehat{MCK}\) (2 góc so le trong)
Xét 2 tam giác vuông \(\Delta BHM\) và \(\Delta CKM\) ta có:
Cạnh huyền BM = CK (GT)
\(\widehat{HBM}=\widehat{MCK}\) (cmt)
=> \(\Delta BHM\) = \(\Delta CKM\) (c.h - g.n)
=> HM = KM (2 canh tương ứng)
=> M là trung điểm của HK
c) Xét \(\Delta BMK\) và \(\Delta CMH\) ta có:
BM = CM (GT)
\(\widehat{HMC}=\widehat{BMK}\) (đối đỉnh)
HM = MK (câu b)
=> \(\Delta BMK\) = \(\Delta CMH\) (c-g-c)
=> \(\widehat{BKM}=\widehat{CHM}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc so le trong
=> CH // BK