tìm x,y,z biết /x+3/+(y-x)^10+(z+x)^20=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ap dụng tích chất dãy tỉ số = nhau
Ta có:x/2=y/3=x+y/5+7=15/15=1
x/2=1=> x=2
y/3=1=> y=3
x + x : 0,2 = 1,35
x * 1 + x * 5 = 1,35
x * ( 1 + 5 ) = 1,35
x * 6 = 1,35
x = 1,35 : 6
x = 0,225
hok tốt nha ^_^
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
\(\left|x\right|+\left|y\right|+\left|z\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y;\left|z\right|\ge0\forall z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|y\right|+\left|z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\left|x\right|+\left|y\right|=0\)
Ta có \(\left|x\right|\ge0\forall x;\left|y\right|\ge0\forall y\)
\(\Rightarrow\left|x\right|+\left|y\right|\ge0\forall x;y\)
\(\Rightarrow\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(\left|x+3\right|+\left(y-x\right)^{10}+\left(z+x\right)^{20}=0\)
Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-x\right)^{10}\ge0\forall x;y\\\left(z+x\right)^{20}\ge0\forall x;z\end{cases}}\)
Mà \(\left|x+3\right|+\left(y-x\right)^{10}+\left(z+x\right)^{20}=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-x\right)^{10}=0\\\left(z+x\right)^{20}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-x=0\\z+x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=x\\z=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=-3\\z=3\end{cases}}}\)