1) có bao nhiêu cặp số nguyên dương (x,y) sao cho \(\frac{2015}{x^2-y^2}\)là 2 số tự nhiên
2)tìm cặp số tự nhiên (a,b) sao cho a2+b2 và a2-b2 đều là ước của 2015
3) có bao nhiêu bộ 3 các số nguyên dương(a,b,c) tm a+b+c=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
1/ P = 123456....20132014
Từ 1 - 9 có 9 chữ số
từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số
từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số
từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số
=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số
2/
n là số n tố > 3 => n lẻ => 22 lẻ
=> n2+ 2015 chia hết cho 2 nên là hợp số
3/
Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9
Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}
* nếu y = 0 => x = 4
* nếu y = 2 => x = 2
* nếu y = 4 => x E {0; 9}
* nếu y = 6 => x = 7
* nếu y = 8 => x = 5
Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]
4/
x/9 - 3/ y = 1/18
=> 2x/18 - 3/y = 1/18
=> 3/y = 1/18 - 2x/18
=> 3/y = 1-2x/18
=> y - 2xy = 54=> y[1-2x] = 54
mà 1 - 2x lẻ nên y chẵn
mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}
y | -2 | 2 | -6 | 6 | -18 | 18 | -54 | 54 |
1-2x | -27 | 27 | -9 | 9 | -3 | 3 | -1 | 1 |
2x | 28 | -26 | 10 | -8 | 4 | -2 | 2 | 0 |
x | 14 | -13 | 5 | -4 | 2 | -1 | 1 | 0 |
vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]
5/
Theo đề bài, ta có:
b E BC[14, 21]
mà b nhỏ nhất nên b = 42
=> 14a = 42 . 5
=> a = 15;
=> 21c = 28 . 42
=> c = 56;
từ đó suy ra
6d = 11 . 56
=> d = 308/3
=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0