Cho hình thoi ABCD cạnh a có góc A = 60◦Một đường thẳng bất kì đi qua C cắt tia đối của các tia BA và DA theo thứ tự tại M và N.
1. Chứng minh rằng tích BM · DN có giá trị không đổi.
2. Gọi K là giao điểm của BN và DM. Tính góc BKD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Truong Tuan Dat - Toán lớp 8 - Học toán với OnlineMath
Em sai đề rồi nhé! Tham khảo đề bài và bài làm tại link này nhé em
a) Ta có : \(\widehat{ABC}=120^o\Rightarrow\widehat{MBC}=180^o-120^o=60^o\)
Tương tự \(\widehat{CDN}=60^o\)
=> \(\widehat{MBC}=\widehat{CDN}\)(1)
Mặt khác: \(\widehat{BMC}=\widehat{BCD}=60^o\), Hai góc này ở vị trí so le trong
=> BM//CD
=> \(\widehat{BMC}=\widehat{DCN}\)( đồng vị ) (2)
Từ (1) , (2)
=> \(\Delta MBC~CDN\)
=> \(\frac{BM}{DC}=\frac{BC}{DN}\Rightarrow BM.DN=BC.DC=a^2\)Không đổi
b) Xét tam giác ABD có: AB=AD =a => ABD cân và góc A bằng 60 độ
=> Tam giác ABD đều
=> AB=BD=AD=a
và \(\widehat{MBD}=180^o-\widehat{ABD}=180^o-60^o=120^o\)Tương tự \(\widehat{BDN}=120^o\)
=> \(\widehat{MBD}=\widehat{BDN}\)(3)
Ta lại có: \(MB.DN=a^2=BD.BD\Rightarrow\frac{MB}{BD}=\frac{BD}{DN}\)(4)
Từ (3), (4) Suy ra \(\Delta MBD~\Delta BDN\)
=> \(\widehat{BMD}=\widehat{DBN}\)
=> \(\widehat{BKD}=\widehat{KBM}+\widehat{BMK}=\widehat{NBM}+\widehat{BMD}=\widehat{NBM}+\widehat{DBN}=\widehat{DBM}=120^o\)
a: Vì BC//AD nên EB/BA=CE/CF
Vì DC//AB nên AD/DF=EC/FC
=>EB/BA=AD/DF
b: Vì ABCD là hình thoi và góc A=60 độ
nên AB=BC=CD=AD=AC
Xét ΔEBD và ΔBDF có
góc EBD=góc BDF
EB/BD=BD/DF
=>ΔEBD đồng dạng với ΔBDF
c: ΔEBD đồng dạng với ΔBDF
=>góc BED=góc DBF
=>ΔBDI đồng dạng với ΔEDB
=>góc BID=góc EBD=120 độ
con điên
1, Có BC//AD (tính chất hình thoi)
Nên \(\widehat{MBC}=\widehat{A}=\widehat{CDN}\)(cách cặp góc đồng vị)
\(\widehat{BCM}=\widehat{DNC}\)(góc đồng vị)
=> \(\Delta\)MBC đồng dạng với \(\Delta\)CDN (g-g)
=> \(\frac{BM}{DC}=\frac{BC}{DN}\)
=> BM.ND=BC.DC=a2(không đổi)
b) \(\Delta\)BCD đều (Do BC=CD và \(\widehat{C}=60^o\)) nên BD=DC=BC
Ta có: \(\frac{BM}{DC}=\frac{BC}{DN}\left(a\right)\Rightarrow\frac{BM}{BD}=\frac{DB}{DN}\)
Lại có: \(\widehat{MBD}=\widehat{BDN}=120^o\)(kề bù với các góc của tam giác đều ABD)
=> \(\Delta BMD=\Delta DBN\left(c.g.c\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{DBN}\)(2 góc tương ứng)
Xét tam giác BKD và tam giác MBD có: \(\widehat{AMD}=\widehat{DBN}\left(cmt\right)\); \(\widehat{BDM}\)chung
=> Tam giác BKD đồng dạng với tam giác MBD (g-g)
\(\Rightarrow\widehat{BKD}=\widehat{MBD}=120^o\)