Bài 4: a) Cho biết a/b<c/d với a, b, c, d thuoc N * . Hãy so sánh a + c/ b + d và c / d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
ta có a+3+b-3 =a +b chia hết cho 4
nên (b-a )(a+b) cũng chia hết cho 4
bài 2.
ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)
\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)
a) \(\text{A : -a+b-c+a+b+c=2b}\)
b)Thay b=-1 vào A=>2 x ( -1)=-2
a, 2b
b,-2
k minh dung nhe ban minh se k cho ban nao k minh
Bài 1: \(3\left(x-2\right)-2\left(x+1\right)=3\)
\(\Leftrightarrow3x-6-2x-2=3\)
\(\Leftrightarrow x=11\)
Vậy x = 11
Bài 2: x + 11 chia hết cho x-2
<=> (x-2)+13 chia hết cho x-2
<=> 13 chia hết cho x-2
<=> x-2 thuộc Ư(13) = {-1;1;13;-13}
Ta lập bảng:
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
Vậy x = {-11;1;3;15}
b) 2x+11 chia hết cho x-1
<=> 2(x-1)+9 chia hết cho x-1
Vì 2(x-1) đã chia hết cho x-1
=> 9 phải chia hết cho x-1
<=> x-1 thuộc Ư(9)={1;-1;3;-3;9;-9}
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
Vậy x = {-8;-2;0;2;4;10}
Bài 3:
a) a.(b-2)=5=1.5=5.1=(-5).(-1)=(-1).(-5)
a | 1 | 5 | -1 | -5 |
b-2 | 5 | 1 | -5 | -1 |
b | 7 | 3 | -3 | 1 |
Vậy (a;b) = (1;7) ; (5;3) ; (-1;-3) ; (-5;1)
b) Tương tự
bài 1 : \(3.\left(x-2\right)-2.\left(x+1\right)=3\)
\(=>3x-6-2x-2=3\)
\(=>x=3+6+2=11\)
bài 2 :
a,\(x+11⋮x-2\)
\(=>x-2+13⋮x-2\)
\(Do:x-2⋮x-2\)
\(=>13⋮x-2\)
\(=>x-2\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-11;1;3;15\right\}\)
b,\(2x+11⋮x-1\)
\(=>x.\left(x-1\right)+13⋮x-1\)
\(Do:x.\left(x-1\right)⋮x-1\)
\(=>13⋮x-1\)
\(=>x-1\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(=>x\in\left\{-12;0;2;14\right\}\)
Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)
\(\Rightarrow VT=VP\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)
=> 2a + 5 = 9
=> 2a = 4
=> a = 2
Thay a vào (1) ta có :
\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)
Vậy a = 2 ; b = 5,5 ; c = 4
5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)
=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)
4(a - b)(b - c) = (c - a)2
=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2
=> 4(-k)(-k) = (-2k)2
=> (-2)2(-k)2 = (-2k)2
=> 22k2 = (2k)2
=> (2k)2 = (2k)2
=> 4(a - b)(b - c) = (c - a)2 (đpcm)