Cho tam giác ABC. vẽ A’ đối xứng với A qua C, vẽ B’ đối xứng với B qua A, vẽ C’ đối xứng với C qua B. D và D’ lần lượt là trung điểm của AC và A’C’ Chứng minh rằng ABD’D là hình bình hành Gọi O là giao điểm các trung tuyến BD và B’D’. chứng minh rằng O là trọng tâm của cả hai tam giác ABC và A’B’C’( làm ơn giúp mình, xin cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của tam giác ABC
=> DE // BC (1)
DE = BC/2 (2)
D là trung điểm của OM (M đối xứng với O qua D)
E là trung điểm của ON (N đối xứng với O qua E)
=> DE là đường trung bình của tam giác OMN
=> DE // MN (3)
DE = MN/2 (4)
Từ (1) và (3)
=> MN // BC (5)
Từ (2) và (4)
=> MN = BC (6)
Từ (5) và (6)
=> MNCB là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED//CB
Xet ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE can tại C
=>CA=CE=BD
Vì BC//ED và BD=CE
nên BCDE là hình thang cân
c: Xét tứ giác AHCK có
N là trung điểm chung của AC và HK
góc AHC=90 độ
=>AHCK là hình chữ nhật
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
Cảm ơn