K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

4 tháng 6 2023

Giả sử \(y\) là số lẻ

Đặt \(\left\{{}\begin{matrix}x^2-y=m^2\\x^2+y=n^2\end{matrix}\right.\left(m,n\inℕ;m< n\right)\)

\(\Rightarrow2y=n^2-m^2\) \(\Rightarrow n^2-m^2\) chia hết cho 2 nhưng không chia hết cho 4.

 Thế nhưng, ta thấy \(n^2\) và \(m^2\) khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1, vậy nên \(n^2-m^2\) khi chia cho 4 sẽ chỉ có số dư là \(0,1,-1\), nghĩa là nếu \(n^2-m^2\) mà chia hết cho 2 thì buộc hiệu này phải chia hết cho 4, mâu thuẫn. Vậy điều giả sử là sai \(\Rightarrow\) đpcm.

 

24 tháng 2 2022

Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.

Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.

Vậy x = y
-game là dễ banh

24 tháng 2 2022

Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.

Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.

Vậy x = y

2 tháng 10 2016

toán lớp 6

24 tháng 9 2021

\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\\ A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2\right)^2-y^4+y^4=\left(x^2+5xy+5y^2\right)^2\left(Đpcm\right)\)