Chứng minh các đẳng thức sau xác định với mọi giá trị của x
A = \(\frac{5-7x}{x^2+x+1}\) - \(\frac{7}{3}\)
B = \(\frac{x+10}{4x^2+2x+3}\) - \(\frac{x^2-4}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Để biểu thức trên được xác định thì : \(x^2+x+1\ne0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy biểu thức luôn được xác định với mọi x .
b, - Để biểu thức trên được xác định thì : \(4x^2+2x+3\ne0\)
Mà \(4x^2+2x+3=\) \(x^2+\frac{x}{2}+\frac{3}{4}=\left(x+\frac{1}{4}\right)^2+\frac{11}{16}>0\)
Vậy biểu thức luôn được xác định với mọi x .
d, - Để biểu thức trên có nghĩa thì : \(3t^2-t+1\ne0\)
Mà \(3t^2-t+1=3\left(t^2-\frac{t}{3}+\frac{1}{3}\right)=3\left(\left(t-\frac{1}{6}\right)^2+\frac{11}{36}\right)>0\)
Vậy biểu thức luôn được xác định với mọi x .
a/. ĐKXĐ : (x-1)(x+1) # 0 => x # 1 hay x # -1
b/. \(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3.2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-4x-3}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{2\left(4-2x\right)}{5}\)
Em xem lại đè nhé. Đề như vậy thì sẽ ko rút gọn đc hết x trên tử. nên B vẫn phụ thuộc vào biến x.
chao cac bạn và a chi nếu đề sửa lai vây thi minh làm thế nào ( x+1/2x-2 + 3/x^2+1 - x+3/2x+1 )* (4x^2 -1)/5
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b) bạn rút gọn, biểu thức sẽ bằng 4
=> giá tri của biểu thức sẽ không phụ thuộc vào biến x
tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái
a, \(A=\frac{5-7x}{x^2+x+1}-\frac{7}{3}\)
Để A xác định thì \(x^2+x+1\ne0\) \(\Leftrightarrow x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\ne0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)
Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{2}>0\text{ }\forall\text{ }x\)
⇒ A xác định với mọi x.(đpcm)
b, \(B=\frac{x+10}{4x^2+2x+3}-\frac{x^2-4}{2}\)
Để B xác định thì \(4x^2+2x+3\ne0\) \(\Leftrightarrow\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\ne0\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\ne0\)
Mà \(\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}>0\forall x\)
⇒ B xác định với mọi x.(đpcm)