BÀI TẬP 1:
cho 3 đường thẳng x'x, y'y, z'z cắt nhau tại 1 điểm O. Trên Ox và Ox', theo thứ tự ta lấy 2 điểm A và A' sao cho OA=OA'. Trên Oy và trên Oy', theo thứ tự ta lấy 2 điểm B và B' sao cho OB= OB'. Trên Oz và Oz' theo thứ tự ta lấy 2 điểm ta lấy 2 điểm C và C' sao cho OC=OC'
1. Chứng minh AB=A'B', AB//A'B'
2. chứng minh ΔABC=ΔA'B'C'
BÀI TẬP 2:
cho tam giác ABC. 2 tia phân giác của các góc B và C cắt nhau tại điểm O. qua O ta vẽ đường thẳng song song với đường thẳng BC. đường thẳng này cắt cạnh Ab ở điểm E và cắt cạnh AC ở điểm F
1. chứng minh các tâm giác BEO và CFO là các tâm cân
2.chứng minh EF=EB+FC
BÀI TẬP 3:
cho tam giác ABC. tia phân giác của góc A cắt cạnh BC tại điểm D. qua D ta vẽ 1 đường thẳng song song với đường thẳng AB, đường thẳng này cắt cạnh Ac tại điểm E; qua E ta vẽ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm F
1. chứng minh tâm giác AED là tam giác cân
2. chứng minh tam giác BFE=tam giác EDB
BÀI TẬP 2:
Ta có:
\(\widehat{EOB}=\widehat{OBC}\left(EF//BC\right)\)
Mà \(\widehat{EBO}=\widehat{OBC}\left(g.t\right)\)
\(\Rightarrow\Delta BEO\text{ cân tại E.(đpcm)}\)
Tương tự:
\(\widehat{FOC}=\widehat{OCB}\left(EF//BC\right)\)
Mà \(\widehat{FCO}=\widehat{OCB}\left(g.t\right)\)
\(\Rightarrow\widehat{FOC}=\widehat{FCO}\)
\(\Rightarrow\Delta CFO\text{ cân tại }F.\left(đpcm\right)\)
b) Ta có:
\(\Delta BEO\text{ cân tại }E\)
\(\Rightarrow EB=EO\) (1)
Tương tự:
\(\Delta CFO\text{ cân tại }F\)
\(\Rightarrow OF=FC\left(2\right)\)
Mặt khác:
\(EF=EO=OF\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow EF=EB+FC\left(đpcm\right)\)
Bài tập onl nghỉ chống dịch covid-19 :((