Cho \(\Delta\)ABC vuông tại A có \(\widehat{B}=^{60^0}\). Trên cạnh BC lấy điểm H sao cho HB = AB. Đường thẳng vuông góc với BC tại H cắt AC tại D. Chứng minh:
a) BD là tia phân giác của \(\widehat{ABC}\).
b) \(\Delta\)BDC cân.
Giúp mình với nha mn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔDHB và ΔDAB ta có:
HB = AB
DB chung
=> ΔDHB = ΔDAB ( cạnh huyền - cạnh góc vuông)
=> =
=> BD là tia phân giác
b, BD là tia phân giác
=> = 30
ΔABC vuông tại A có = 60
=> = 30
Xét ΔDCH và ΔDBA ta có:
= ( =30)
DH = DA ( do ΔDHA = ΔDAB chứng minh câu a)
=> ΔDCH = ΔDBA ( cạnh huyền - góc nhọn)
=> DC = DB
=> ΔBDC cân tại D
a/ Xét tg vuông ABD và tg vuông HBD có
BD chung; HB=AB (gt) => tg ABD = tg HBD (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{ABD}=\widehat{HBD}\) => BD là phân giác \(\widehat{ABC}\)
b/
Xét tg vuông ABC có
\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
\(\Rightarrow AB=\frac{BC}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (1)
Ta có HB=AB (gt) (2)
Từ (1) và (2) \(\Rightarrow HB=\frac{BC}{2}\) => H là trung điểm của BC => DH là trung tuyến thuộc BC
Mà \(DH\perp BC\) => DH là đường cao của tg BDC
=> tg BDC cân tại D (Trong tg nếu đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..