Tìm số thực k nhỏ nhất sao cho đẳng thức xảy ra với mọi x,y không âm
\(x^n+y^n\le2\left(\frac{x+y}{2}\right)^n+k\left|x^n-y^n\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)
\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)
\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)
\(P=6x^2-x^3+6y^2-y^3+\frac{x+y}{xy}-x^2y-xy^2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\le6\left(x^2-xy+y^2\right)\)
\(\Rightarrow-\left(x^3+y^3\right)\ge-6x^2-6y^2+6xy\)
\(\Rightarrow P\ge6xy+\frac{x+y}{xy}-xy\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{xy}=\frac{1}{y}+\frac{1}{x}\ge\frac{4}{x+y}\ge\frac{2}{3}\)
\("="\Leftrightarrow x=y=3\)
Tag bị với hiệu hoá rồi, tag nữa cũng ko được đâu bạn :)) Bạn vô ib trực tiếp ý :))
Bài 2/ Không mất tính tổng quát giả sử: \(xy\ge0\)
\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\le\left(x+y\right)^2+z^2=2z^2\le2\)
Câu 3/
Dễ thấy n = 20 thì \(20^{20}\) có số lượng số lớn hơn 19 chữ số.
\(\Rightarrow n< 20\)
Xét \(n>2\) ta dễ thấy n phải là lũy thừa của 2 vì giải sử
\(n=\left(2k+1\right).2^a\)
\(\Rightarrow P=\left(n^{2a}\right)^{2a+1}+1=A.\left(n^{2a}+1\right)\)không phải là số nguyên tố.
\(\Rightarrow n=4;8;16\)
Xét \(n=1;2\) nữa là xong
PS: Thôi nghỉ không làm nữa
S=1+4+7+..+n
Tổng S có số số hạng là \(\frac{\left(n-1\right)}{3}+1=\frac{n+2}{3}\)
Tổng S có giá trị là
\(S=\frac{\left(n+1\right)}{2}.\frac{n+2}{3}=\frac{\left(n+1\right)\left(n+2\right)}{6}\)