cho tam giac abc vg tai a (ab<ac),tren canh bc lay diem d sao cho ba=bd.Ke bh vg goc voi ad .a,c.m tam giac abd can va tam giac ah b =tam giac dhb.b, tren tia doi cua tia ab lay diem e sao cho ae =dc.c/m tam giac bde = tam giac bac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
a) +) Xét ΔABD có
BA = BD ( gt)
⇒ Δ ABD cân tại B
+) Xét Δ BHA vuông tại H và Δ BHD vuông tại H có
BA = BD ( gt)
BH: cạnh chung
⇒ ΔBHA = Δ BHD (ch-cgv)
b)+) Ta có \(\left\{{}\begin{matrix}BA=BD\\AE=DC\end{matrix}\right.\)
⇒ BA + AE = BD + DC
⇒ BE = BC
+) Xét Δ BED và ΔBCA có
BE = BC ( cmt)
\(\widehat{ABC}\) : góc chung
BD = BA ( gt)
⇒ ΔDBE = ΔABC (c-g-c)
Lần sau vt đề hẳn hoi ra nhá bạn ơi~~~~
Học tốt ~~~
## Chiyuki Fujito
Xét ΔBAD vuông tại A vàΔBND vuông tại N có
BD chung
\(\widehat{ABD}=\widehat{NBD}\)
Do đó: ΔBAD=ΔBND
Cho tam giác ABC nhọn (AB<AC)nội tiếp (O;R). Ly điểm M tuỳ ý trên cung nhỏ BC, kẻ MP vg góc AB, MR vg góc AC và PR cắt BC tai Q
- Cm: tg APMR noi tiep
- Cm: MQ vg goc BC va PM.CM=BM.MR
- Kẻ đg cao AD va CE cua Tam giac ABC cắt nhau tai H. Đg kính BK cat DE tai I. Cm: tg DCKI noi tiep dg tron
- Ke CS vg góc AM tai S. Cm: PQ=ES
ai tích mình tích lại
a: Xét tứ giác AMBD có
I là trung điểm của AB
I là trung điểm của MD
Do đó: AMBD là hình bình hành
mà MA=MB
nên AMBD là hình thoi
=>DA//BM
b: Sửa đề: E là giao điểm của AM và CD
Xét tứ giác ACMD có
MD//AC
MD=AC
Do đó: ACMD là hình bình hành
Suy ra: AM cắt CD tại trung điểm của mỗi đường
=>AE=EM