K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MA = MN (tính chất đối xứng tâm)

ME = MF (tính chất đối xứng tâm)

Tứ giác AENF có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: AF // NE

Mà NE ⊥ AB (chứng minh trên)

Suy ra: AF ⊥ AB tại A

Vậy FA là tiếp tuyến của đường tròn (O).

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xet ΔNAB có

AC.BM là các đường cao

AC cắt BM tại E

Do đó: E là trực tâm

=>NE vuông góc với AB

b: Xét tứ giác NEAF có

M là trung điểm chung của NA và EF

nên NEAF là hình bình hành

=>NE//AF

=>AF vuông góc với AB

=>FA là tiêp tuyến của (O)

23 tháng 6 2017

Đường tròn

3 tháng 8 2021

Tham khảo :

3 tháng 8 2021

23 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác ABN ta có: AN ⊥ BM và AM = MN

Suy ra tam giác ABN cân tại B

Suy ra BA = BN hay N thuộc đường tròn (B; BA)

Tứ giác AFNE là hình bình hành nên AE // FN hay FN // AC

Mặt khác: AC ⊥ BN (chứng minh trên)

Suy ra: FN ⊥ BN tại N

Vậy FN là tiếp tuyến của đường tròn (B; BA)