K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Đây là Toán hay Lí vậy bạn !!?

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2

4 tháng 10 2020

Ta có: \(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2xy+2x+4=2\left(xy+x+2\right)\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)\(6y^2+z^2+6=\left(4y^2+z^2\right)+\left(2y^2+2\right)+4\ge4yz+4y+4=4\left(yz+y+1\right)\Rightarrow\frac{2y}{6y^2+z^2+6}\le\frac{y}{2\left(yz+y+1\right)}\)\(3z^2+4x^2+16=\left(z^2+4x^2\right)+\left(2z^2+8\right)+8\ge4zx+8z+8=4\left(zx+2z+2\right)\Rightarrow\frac{4z}{2z^2+4x^2+16}\le\frac{z}{zx+2z+2}\)Từ ba bất đẳng thức trên suy ra:\(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)=\frac{1}{2}\left(\frac{xz}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)=\frac{1}{2}\left(\frac{zx}{zx+2z+2}+\frac{2}{zx+2z+2}+\frac{2z}{zx+2z+2}\right)=\frac{1}{2}\)Đẳng thức xảy ra khi x = y = 1; z = 2

10 tháng 12 2017

bạn ơi hình như có chút sai đề

26 tháng 4 2020

\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)

\(\frac{1}{x^2+y^2+y^2+1+2}+\frac{1}{y^2+z^2+z^2+1+2}+\frac{1}{z^2+x^2+x^2+1+2}\)

\(\le\frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)

\(\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{xyzx+yzx+zx}+\frac{x}{yzx+zx+x}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{x+1+zx}+\frac{x}{1+zx+x}+\frac{1}{zx+x+1}\right)\)

= 1/2

Dấu "=" xảy ra <=> x = y =z =1 

26 tháng 4 2020

Áp dụng BĐT AM-GM ta có:\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}}\)

Tương tự ta cũng có

\(\frac{1}{y^2+2x^2+3}\le\frac{1}{2yz+2z+2};\frac{1}{z^2+2x^2+3}\le\frac{1}{2xz+2x+2}\)

Do đó ta có:\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác, do xyz=1 nên ta có:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{y}{xy+y+1}+\frac{xy}{xy+y+1}\)

\(=\frac{xy+y+1}{xy+y+1}=1\)

\(\Rightarrow VT\le\frac{1}{2}\). Dấu "=" xảy ra <=> x=y=z=1

25 tháng 5 2018

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

27 tháng 5 2018

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1