K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Máy bài này em không biết tại cái này của lớp6

22 tháng 10 2021

bài này của lớp 9 ko  của lớp 6

NV
22 tháng 6 2019

a/

\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)

b/

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

14 tháng 8 2019

a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)

b) Giống câu a ?

c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)

\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)

\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)

\(=\sqrt{ab}\)

19 tháng 9 2020

Áp dụng BĐT Cô - si ta có :

\(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a.\left(b+c\right)}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

Chứng minh tương tự ta có :

\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế của các BĐT cùng chiều ta có :

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy BĐT được chứng minh !

29 tháng 9 2020

Dấu "=" xảy ra <=> a = b + c; c = a + b ; b = a + c => vô lí => Không thể xảy ra dấu "=" được

31 tháng 10 2015

Áp dụng bđt Cauchy, ta có:

\(\sqrt{\frac{a}{bc}}\)+\(\sqrt{\frac{b}{ca}}\)≥ \(2\sqrt{\sqrt{\frac{ab}{abc^2}}}\)\(2\sqrt{\sqrt{\frac{1}{c^2}}}\)\(2\sqrt{\frac{1}{c}}\) (vì c>0)

Tương tự: \(\sqrt{\frac{b}{ca}}\)+\(\sqrt{\frac{c}{ab}}\)≥ \(2\sqrt{\frac{1}{a}}\)

                \(\sqrt{\frac{c}{ab}}\)+\(\sqrt{\frac{a}{bc}}\)≥ \(2\sqrt{\frac{1}{b}}\)

Cộng vế theo vế của các bđt với nhau, ta có: \(2\)\(\left(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\right)\text{≥}\)\(2\left(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\right)\)

                                                             <=> \(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\text{≥}\)\(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)(đpcm)

Dấu "=" xảy ra <=> a = b = c

 

Ta có: \(A=\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\left(\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\right)\)

\(=\left(\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right):\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)^2}-\frac{a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\right)\)

\(=\frac{a-\sqrt{ab}-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\frac{a\sqrt{a}+a\sqrt{b}-a\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

\(=\frac{-\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{a\sqrt{b}}\)

\(=\frac{-\sqrt{a}\cdot\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}\right)^2\cdot\sqrt{b}}\)

\(=\frac{-\sqrt{a}-\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\)

25 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 300 giải nhanh nha đã có 241 người nhận rồi

OKuk