chia số 620 thành 3 phần
a) Tỉ lệ thuận với các số 2,3,5
b)Tỉ lệ nghịch với các số 2,3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ba số là \(a;b;c\left(a;b;c\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)
Vì ba số tỉ lệ thuận với \(2;3;5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{620}{10}=62\). Từ đó ta có :
\(a=62.2=124\) \(b=64.3=192\) \(c=62.5=310\)
b) Gọi ba số là \(x;y;z\left(x;y;z\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)
Vì ba số tỉ lệ nghịch với \(2;3;5\Rightarrow2x=3y=5z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{x+y+z}{\frac{15}{30}+\frac{10}{30}+\frac{6}{30}}=\frac{620}{\frac{31}{30}}=600\)
\(\Leftrightarrow x=620.\frac{1}{2}=310\) \(\Leftrightarrow y=620.\frac{1}{3}=\frac{620}{3}\) \(\Leftrightarrow z=620.\frac{1}{5}=124\)
a) Gọi 3 phần đó lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và \(a+b+c=310\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
\(\dfrac{a}{2}=31\Rightarrow a=31.2=62\)
\(\dfrac{b}{3}=31\Rightarrow b=31.3=93\)
\(\dfrac{c}{5}=31\Rightarrow c=31.5=155\)
Vậy chia số 310 thành 3 phần lần lượt là 62, 93, 155
b) Gọi 3 phần đó lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\) và \(a+b+c=310\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{310}{\dfrac{31}{30}}=300\)
\(\dfrac{a}{\dfrac{1}{2}}=300\Rightarrow a=300.\dfrac{1}{2}=150\)
\(\dfrac{b}{\dfrac{1}{3}}=300\Rightarrow b=300.\dfrac{1}{3}=100\)
\(\dfrac{c}{\dfrac{1}{5}}=300\Rightarrow c=300.\dfrac{1}{5}=60\)
Vậy chia số 310 thành 3 phần lần lượt là 150, 100, 60
Gọi ba phần được chia lần lượt là a,b,c
a: Theo đề, ta có: a/2=b/3=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
Do đó: a=62; b=93; c=155
b: Theo đề, ta có: 2a=3b=5c
=>2a/30=3b/30=5c/30
=>a/15=b/10=c/6
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\)
Do đó: a=150; b=100; c=60
a)
Gọi 3 phần của số 6200 lần lượt là a, b, c.
Theo đè ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và \(a+b+c=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{6200}{10}=620\)
\(\dfrac{a}{2}=620\Rightarrow a=620.2=1240\)
\(\dfrac{b}{3}=620\Rightarrow b=620.3=1860\)
\(\dfrac{c}{5}=620\Rightarrow c=620.5=3100\)
Vậy số 6200 được chia thành 3 phần lần lượt là 1240, 1860, 3100.
b)
Gọi 3 phần của số 6200 lần lượt là a, b, c.
Theo đè ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\) và \(a+b+c=6200\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{6200}{\dfrac{31}{30}}=6000\)
\(\dfrac{a}{\dfrac{1}{2}}=6000\Rightarrow a=6000.\dfrac{1}{2}=3000\)
\(\dfrac{b}{\dfrac{1}{3}}=6000\Rightarrow b=6000.\dfrac{1}{3}=2000\)
\(\dfrac{c}{\dfrac{1}{5}}=6000\Rightarrow c=6000.\dfrac{1}{5}=1200\)
Vậy số 6200 được chia thành 3 phần lần lượt là 3000, 2000, 1200.
a) Gọi x,y,z là 3 số theo thứ tự tỉ lệ thuận với 2,3,5
Ta có : \(x:y:z=2:3:5\) và x + y + z = 620
hay \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x + y + z = 620
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{620}{10}=62\)
=> \(\hept{\begin{cases}\frac{x}{2}=62\\\frac{y}{3}=62\\\frac{z}{5}=62\end{cases}}\Rightarrow\hept{\begin{cases}x=124\\y=186\\z=310\end{cases}}\)
b) Gọi a,b,c là 3 số tỉ lệ nghịch với \(2,3,5\)
Ta có : \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)và a + b + c = 620
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{620}{\frac{31}{30}}=600\)
=> \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=600\\\frac{b}{\frac{1}{3}}=600\\\frac{c}{\frac{1}{5}}=600\end{cases}}\Rightarrow\hept{\begin{cases}a=300\\b=200\\c=120\end{cases}}\)