câu 1 :có hay ko một số nguyên tố mà khi chia cho 12 mà dư 9?
câu 2:Chứng minh rằng :trong 3 số nguyên tố lớn hơn 3 ,luôn tồn tại hai số nguyên tố ma tổng hoăch hiệu của chúng chia hết cho 12.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
1, B = 308/1 + 307/2 + 306/3 + ... + 3/306 + 2/307 + 1/308
= ( 307/2 + 1 ) + ( 306/3 + 1 ) + ... + ( 3/306 + 1 ) + ( 2/307 + 1 ) + ( 1/308 + 1 ) + 1
= 309/2 + 309/3 + ... + 309/306 + 309/307 + 309/308 + 1
= 309 . ( 1/2 + 1/3 + ... + 1/306 + 1/307 + 1/308 + 1/309 )
= 309 . A
=> A/B = 1/309
Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728
Các số nguyên tố hơn 3 chia hết cho 12 thì dư 11 ; 7 ; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư
Này thành 2 nhóm : ( 5 ; 7 ) và ( 1 ; 11 ) thì với ba số bất kỳ đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên ( nguyên ý
dirichlet )
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11;7;5 hoặc 1; mà 5+7=11=12 chia hết cho 12 nên nếu chia cho 4 số dư này thành 2 nhóm là ( 5;7 ) và ( 1;11 )thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên .
Chúc bạn thi học kỳ 2 đc 10 điểm nhé♥
mình chỉ giải được câu 1 thôi nhé
số nguyên tố là số >1 có 2 ước
gọi số đó là 12k+9
a=12k+9 mà số nguyên tố là số >1 suy ra a >9 achia hết cho 3
vậy không có số nguyên tố thõa mãn
bù nốt cho bạn này nhé
số nguyên tố chia 12 dư 9=12k+9
mà 12k+9=3(4k+3)
từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)
mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)
vậy Không có số nguyên tố nào chia 12 dư 9