cho tam giác ABC, AD là tia phân giác góc BAC(D thuộc BC), biết AB=3, AC=4, Bc=6. Tính BD, DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xet ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/6=3/9=1/3
=>BD=2cm
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
Vì AD là phân giác nên
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{6}{12}=\dfrac{1}{2}\Rightarrow DC=4cm;DB=2cm\)
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>BE=AC
b: AC=BE
mà AB>AC
nên BA>BE
=>góc BEA>góc BAE