K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

1) Với x = 0; y = 2

A = (x^2 - y^2 + x + y)/(2 + x^2 + y^2)

A  = (0^2 - 2^2 + 0 + 2)/(2 + 0^2 + 2^2)

A = -1/3

3) Với x = 2; y = -2

A = (x^2 - y^2 + x + y)/(2 + x^2 + y^2)

A = [2^2 - (-2)^2 + 2 + (-2)]/[2 + 2^2 + (-2)^2]

A = 0

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

22 tháng 12 2021

3r3reR

a: \(A=\dfrac{2}{xy}:\left(\dfrac{y-x}{xy}\right)^2-\left(\dfrac{x^2+y^2}{\left(x-y\right)^2}\right)\)

\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}=-1\)

2:

\(P=\dfrac{\left(5x+3\right)^2}{3x-2}\cdot\dfrac{\left(3x-2\right)\left(3x+2\right)}{5x+3}=\left(5x+3\right)\left(3x+2\right)\)

8 tháng 4 2023

Bạn làm đc câu b không ạ?

5 tháng 4 2021

\(A=\left(1-\frac{2}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{2}\right)\)

\(=\left(\frac{x-2}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{2+y}{2}\right)\)

mà \(x-2=y;y-x=-2;2+y=x\)

\(=\frac{-2xy}{2xy}=-1\)

giúp mk vs

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C...
Đọc tiếp

Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24

0