Cho ∆ MNE vuông tại M có MN=6cm; ME có 8cm. MH vuông góc với NE tại H
a)tính Diện tích ∆ MNE
b)tính NE và MH
c)tính HE và HN
CÁC BẠN GIẢI GIÚP MÌNH NHÉ, MÌNH ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNE có \(ME^2=NM^2+NE^2\)
nên ΔMNE vuông tại N
b: MH=3,6cm
HE=6,4cm
a, Xét ΔMNE có:
\(\widehat{M}+\widehat{N}+\widehat{E}=180^o\\ \Rightarrow\widehat{E}+40^o+50^o=180^o\\ \Rightarrow\widehat{E}=90^o\)
⇒ΔMNE vuông tại E
b,Áp dụng định lý Pi-ta-go ta có:
\(EN^2+EM^2=MN^2\\ \Rightarrow NE^2=MN^2-EM^2\\ \Rightarrow NE=\sqrt{25^2-15^2}\\ \Rightarrow NE=20\left(cm\right)\)
Ta có E+M+N=180 độ (tổng 3 góc trong 1 tam giác)
=>E+40+50=180 độ
=>E+90=180 độ
=>E=180-90=90 độ
=>tam giác MNE vuông tại E vì có E là góc 90 độ
b)Xét tam giác MNE vuông tại E chứng minh trên có:
\(ME^2+EN^2=MN^2\)
\(15^2+EN^2=25^2\)
\(EN^2=25^2-15^2=625-225=400\)
\(=>EN=20cm\)
=>Kết luận...
Chúc em học giỏi =)
a: Xét ΔMNE vuông tại M có
\(MN^2+ME^2=NE^2\)
hay ME=4(cm)
a) Xét hai tam giác vuông tam giác NMD ( M = 90 độ ) và tam giác END ( E = 90 độ ) có
ND là cạnh chung
góc MND = góc END ( vì ND là tia phân giác )
Do đó tam giác NMD = tam giác END ( cạnh huyền - góc nhọn )
b) Ta có tam giác NMD = tam giác END ( cmt )
=> NM = NE ( hai cạnh tương ứng )
Mà góc N = 60 độ
=> tam giác MNE là tam giác đều
c) Ta có tam giác MNE là tam giác đều
=> NM = NE = ME ( 1 )
=> góc NME = 60 độ
Ta có góc NME + góc EMP = 90 độ
Mà góc NME = 60 độ ( cmt )
=> góc EMP = 30 độ ( * )
Ta có tam giác NMP vuông tại M
=> góc N + góc P = 90 độ ( hai góc nhọn phụ nhau )
Mà góc N = 60 độ
=> góc P = 30 độ (**)
Từ (*) và (**) suy ra
tam giác EMP cân tại E
=> EM = EP ( 2 )
Từ (1) và (2) suy ra
NE = EP = 7 cm
Mà NE + EP = NP
7 cm + 7 cm = NP
=> NP = 14 cm
Vậy NP = 14 cm
a: Xét ΔMBN và ΔMAE có
MN=ME
góc N=góc E
NB=EA
=>ΔMBN=ΔMAE
=>MA=MB
=>ΔMAB cân tại M
b: ΔNBM cân tại N
=>góc MBN=(180-45)/2=67,5 độ
ΔAMB cân tại M
=>góc AMB=180-2*67,5=45 độ