Tìm nghiệm nguyên của phương trình:
5xy - 2y2 - 2x2 + 2 = 0
giải hộ ngen :v có rảnh thì kb cũng dc :D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
\(2x^2+2y^2-5xy+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y+1\right)=-3\)
x-2y | -3 | -1 | 1 | 3 |
2x-y+1 | 1 | 3 | -3 | -1 |
x | 1 | 5/3 | -3 | -7/3 |
y | 2 | 4/3 | -2 | -8/3 |
Vậy \(\left(x;y\right)=\left(1;2\right)\) là bộ nghiệm nguyên dương duy nhất
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
\(y\in\left(-\infty;\infty\right)\)
\(-2y^2-3xy-2y+2x^2+6x=1\)
\(-2y^2-3xy-2y-2x^2+6x-1=0\)
\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)
\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)
\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)
#Ứng Lân
\(2x^2+5xy+3y^2\\= 2x^2+2xy+3xy+3y^2\\= 2x\left(x+y\right)+3y\left(x+y\right)\\=\left(2x+3y\right)\left(x+y\right) \)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
Lời giải:
$x^2-2y^2=5\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên
$x^2-2y^2=5$
$\Leftrightarrow (2k+1)^2-2y^2=5$
$\Leftrightarrow 2k^2+2k-y^2=2$
$\Rightarrow y$ chẵn. Đặt $y=2t$ với $t$ nguyên
PT trở thành: $2k^2+2k-4t^2=2$
$\Leftrightarrow k^2+k-2t^2=1$
Điều này vô lý do $k^2+k-2t^2=k(k+1)-2t^2$ chẵn còn $1$ thì lẻ
Vậy pt vô nghiệm.
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)
\(\Rightarrow\left(2x-1\right)^2< 3\) (1)
\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))
- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)
\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)
Ta có:
2x^2+3xy-2y^2=7
=> 2x^2-xy+4xy-2y^2=7
=> x(2x-y)+2y(2x-y)=7
=> (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
=> 2(2x-y)+x+2y=15
=> 5x=15
=> x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y= 1,x+2y= 7 => x=1,8 , y=2,6 (loại)
Nếu 2x-y=-1,x+2y=-7 => x=-1,8 , y=-2,6(loại)
Nếu 2x-y=-7, x+2y=-1=> x=-3, y=1(loại)
Vậy (x;y) là (3;-1);(-3;1)