K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.

Mà 1003 × số chẵn = số chẵn nên x là số chẵn.

Vậy x chia hết cho 2

b) Để 1003x là số chẵn < 2008 thì x= 2

Suy ra y= 1

Vậy x= 2, y= 1

16 tháng 7 2021

Bạn tham khảo :

a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.

Mà 1003 × số chẵn = số chẵn nên x là số chẵn.

Vậy x chia hết cho 2

b) Để 1003x là số chẵn < 2008 thì x= 2

Suy ra y= 1

Vậy x= 2, y= 1

Nguồn : H.ọ.c24.vn

 

a/1003.x+2.y=2008

Ta có 2y chia hết cho 2

        2008 chia hết cho 2

==>1003.x chia hết cho 2

    Mà 1003 không chia hết cho 2 

==> x chia hết cho 2

b/Do x,y nguyên dương

==> 1003.x =< 2008

                 x=<2

Nếu x=1

1003.1+2y=2008

  1003+2y=2008

            2y=2008-1003

            2y=1005

              y=1005:2

              y=502,5

 Mà y là số nguyên dương 

Nên trường hợp x=1;y=502,5 không thoản mãn đề bài.

Nếu x=2

 1003.2+2.y=2008

    2006+2y=2008

              2y=2008-2006

              2y=2

                y=2:2

                y=1

Vậy x=2;y=1

Ta có:

\(1003x+2y=2008\Rightarrow1003x=2008-2y=2\left(1004-y\right)\)

Ta lại có:

\(2\left(1004-y\right)⋮2\Rightarrow1003x⋮2\Rightarrow x⋮2\)(đpcm)

24 tháng 8 2019

a.Vì x,y là số nguyên dương

     => 1003 và 2y cũng là số nguyên dương                              

 Vì 2008 là số chẵn 

 mà 2y cũng là số chẵn

=> 1003x là số chẵn

Vì 1003 là số lẻ 

mà 1003x là số chẵn

=> x là số chẵn 

=> x chia hết cho 2 (đpcm)

                       Vậy ta có đpcm

1005.x+4y=2018(*)

Vì x, y là số nguyên dương nên x, y>0

Với x> hoặc =3 thì 4y<0 suy ra y<0 (trái với đề bài, loại)

=>x thuộc{1; 2}

Với x=1 thì (*) trở thành:

1005+4y=2018

4y=1013

Vì 1013 không chia hết cho 4 nên y không phải số nguyên(loại)

Với x=2 thì (*) trở thành:

2010+4y=2018

4y=8

y=2

=>x chia hết cho 2

Vậy x=2; y=2.

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

11 tháng 4 2018

a, Ta có: 3xy - 5 = x2 + 2y

=> 3xy - x2 - 2y = 5

=> y.( 3x - 2 ) = 5 + x.x

=> y = \(\frac{5+x^2}{3x-2}\)

=> \(x^2+5⋮3x-2\)( vì y là số nguyên )

=> \(3x^2+15⋮3x-2\)

\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)

\(\Rightarrow2x+15⋮3x+2\)

\(\Rightarrow6x+45⋮3x+2\)

\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)

\(\Rightarrow41⋮3x+2\)

\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)

\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)

VÌ 3x chia hết cho 3

\(\Rightarrow3x\in\left\{-3;39\right\}\)

\(\Rightarrow x\in\left\{-1;13\right\}\)

+) với x = -1 => y = -6/5 ( loại )

+) với x = 13 => y = 174/37 ( loại )

Vậy không tìm được ( x ; y ) thỏa mãn bài

b,

Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)