cho tam giác ABC vuông cân tại A , Điểm M nằm bên trong tam giác sao cho MA=2 cm, MB=3 cm và AMC= 135^o. Tính MC
giúp mk nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C
Bài làm
ta có: tam giác MAD vuông cân tại A
=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2
góc AMD = góc ADM = 45 độ
mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)
thay số: 45 độ + góc DMC = 135 độ
góc DMC = 135 độ - 45 độ
góc DMC = 90 độ
\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)
Xét tam giác MAD vuông cân tại A
có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)
\(\Rightarrow MA^2+MA^2=DM^2\)
2.MA2 = DM2
Xét tam giác DCM vuông tại M
có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)
=> 2.MA2 + MC = CD2
\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)
ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)
và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)
Xét tam giác ABM và tam giác ACD
có: AB = AC (gt)
góc BAM = góc CAD (cmt)
AM = AD ( tam giác MAD vuông cân tại A)
\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)
=> MB = CD ( 2 cạnh tương ứng)
=> MB2 = CD2 (2)
Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)
trên nửa mặt phẳng bờ AM không chứa điểm B vẽ tam giác ADM vuông cân tại A
Ta có : \(\widehat{DMC}=\widehat{AMC}-\widehat{AMD}=90^o\)
\(\Rightarrow\)\(\Delta ADC=\Delta AMC\left(c.g.c\right)\)
\(\Rightarrow\)DC = MB = 3cm
Xét \(\Delta AMD\)vuông tại A, theo định lí Py-ta-go, ta có :
MD2 = MA2 + AD2 = 22 + 22 = 8
Xét \(\Delta MCD\)vuông tại M , theo định lí Py-ta-go, ta có :
CD2 = MD2 + MC2 \(\Rightarrow\)MC2 = CD2 - MD2 \(\Rightarrow\)MC2 = 32 - 8 = 1 \(\Rightarrow\)MC = 1 cm
trên nửa mặt phẳng bờ AM ko chứa điểm B dựng tam giác ADM zuông cân tại đỉnh A
ta có AD=MA=2cm
\(\widehat{AMD}=45^0;\widehat{DMC}=\widehat{AMC}-\widehat{AMD}=90^0\)
Xét tam giác ADC zà tam giác AMB có
\(\hept{\begin{cases}AD=AM\\AC=Ab\left(gt\right)\\\widehat{DAC}=\widehat{MAB}\end{cases}}\)(cùng phụ zới góc CAM , ( cái này là giải thích tại sao góc DAC= góc MAB nha)
=> 2 tam giác trên = nhau
=>\(DC=MB\)
tam giác AMD zuông tại A nên \(MD^2=MA^2+AD^2\)
=>\(MD^2=2^2+2^2=8\)
tam giác MDC zuông tại M nên
\(DC^2=MD^2+MC^2\Leftrightarrow3^2=8+MC^2=>MC=1\)
cảm ơn bn