Hãy tìm tích của tất cả các số tự nhiên có 1 chữ số ? ( khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/1025;1052;1250;1205;2015;2150;2051;2501;5120;5210;5201;5102 b/32587
a/1025;1052;1250;1205;2015;2150;2051;2501;5120;5210;5201;5102 b/32587
Câu 1 (3 điểm)
Viết tập hợp H bao gồm các số tự nhiên khác 0; nhỏ hơn 50 và chia hết cho 3.
\(H=\left\{3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48\right\}\)
Câu 2 (3 điểm)
Dùng các số tự nhiên 0; 2; 3; 4, hãy viết tất cả các số tự nhiên có 3 chữ số khác nhau:
- 203
- 204
- 230
- 234
- 240
- 243
- 302
- 304
- 320
- 324
- 340
- 342
- 402
- 403
- 420
- 423
- 430
- 432
Chữ số hàng trăm của một số tự nhiên có ba chữ số phải khác 0.
Do đó ta chỉ có thể chọn 1 hoặc 2 làm chữ số hàng trăm.
– Với chữ số hàng trăm bằng 1 ta có các số: 102; 120.
– Với chữ số hàng trăm bằng 2 ta có các số: 201; 210.
Vậy ta viết được 4 số có ba chữ số khác nhau từ các chữ số 0 ; 1 ; 2 là 102 ; 120 ; 201 ; 210.
Các số tự nhiên có 3 chữ số mà các chữ số khác nhau là : 102 ;120;201;210
ai có kết quả giống m thì ủng hộ nhé
Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
= 1x2x3x4x5x6x7x8x9
= 362880
hok tốt
= 362880