Tìm n€Z bt
a. n+2 là ước của n-1
b. n^2+5 chia hết cho n^2+2
c. 2n+7 là bội của n-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
a) Ta có: n + 7 \(\in\)Ư(n + 8)
<=> n + 8 \(⋮\)n + 7
<=> (n + 7) + 1 \(⋮\)n + 7
<=> 1 \(⋮\)n + 7
<=> n + 7 \(\in\)Ư(1) = {1; -1}
Lập bảng:
n + 7 | 1 | -1 |
n | -6 | -8 |
Vậy ...
b) Ta có: 2n - 9 = 2(n - 5) + 1
Do n - 5 \(⋮\)n - 5 => 2(n - 5) \(⋮\)n - 5
Để 2n - 9 \(⋮\)n - 5 => 1 \(⋮\)n - 5 => n - 5 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
c) Ta có: n2 - n - 1 = n(n - 1) - 1
Do n - 1 \(⋮\)n - 1 => n(n - 1) \(⋮\)n - 1
Để n2 - n - 1 \(⋮\)n - 1 thì 1 \(⋮\)n - 1 => n - 1 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
d) Ta có: n2 + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6
Tương tự
a) 2n+5 chia hết cho n+2 => 2n+5 chia hết cho 2n+4, 2n+4 chia hết cho n+2
=> 2n+5-(2n+4) chia hết cho n+2 => 1 chia hết cho n+2 => n+2=1 hoặc n+2=-1
=> n=-1 hoặc n=-3
b) 3n+5 là B(n-2) => 3n+5 chia hết cho n-2 => 3n+5 chia hết cho 3n-6
=> 3n+5-(3n-6) chia hết cho n-2 => 11 chia hết cho n-2 => n-2=11; n-2=1; n-2=-1 hoặc n-2=-11
=> n=13; n=3; n=1 hoặc n=-9.
c) n-1 là Ư(2-4n) => 2-4n chia hết cho n-1 => 2-4n chia hết cho 4n-4
=> 2-4n+(4n-4) chia hết cho n-1 => -2 chia hết cho n-1 => n-1=2; n-1=1; n-1=-1 hoặc n-1=-2
=> n=3; n=2; n=0 hoặc n=-1.
2n+5\(⋮\)n+2=>2.(n+2)+1\(⋮\)n+2
=>n+2 thuộc U(1)={1,-1}
=>n={...}
\(n-1⋮n+2\)
\(n+2-3⋮n+2\)
\(-3⋮n+2\)
\(\Rightarrow n+2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Tự lập bảng nha !
\(2n+7⋮n-3\)
\(2\left(n-3\right)+13⋮n-3\)
\(13⋮n-3\)
\(\Rightarrow n-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Tự lập bảng nha !
n+2 là ước của n-1
=) \(n+2⋮n-1\)
=)\(\left[n+2-\left(n-1\right)\right]⋮n-1\)
=)\(n+2-n+1⋮n-1\)
=)\(3⋮n-1\)
=)\(n-1\inƯ\left(3\right)=\left\{+-1;+-3\right\}\)
=)\(n\in\left\{0;2;4;-2\right\}\)