Chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho:
/x -2y/ + /4y-5z/ +/z - 3x/=2011
Chú ý:các dấu gạch chéo kia là dấu trị tuyệt đối đấy nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+2y-4z-2x\)
Xét \(a< 0\) ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Xét \(a=0\) ta có:\(\left|a\right|+a=0⋮2\)
Xét \(a>0\) ta có:\(\left|a\right|+a=a+a=2a⋮2\)
Vậy với mọi a thì \(\left|a\right|+a\) luôn chia hết cho 2
Áp dụng vào bài ta có:\(\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
mà \(2019+2y-4z-2x\) không chia hết cho 2,vô lí
Vậy không tồn tại số nguyên x,y,z thỏa mãn
a) Xét :
\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)
\(\text{Với mọi a}\left(\text{a là số nguyên thì:}\right)|a|\text{ cùng tính chẵn lẻ với a}\)
\(\Rightarrow2011\text{ cùng tính chẵn lẻ với:}x-2y+4y-5z+z-3x=2y-4z-2x=2\left(y-2z-x\right)\text{ là số chẵn}\)
\(\Rightarrow\text{ vô lí}\Rightarrow\text{ điều phải chứng minh}\)
Giả sử tồn tại các số nguyên thỏa x,y,z mãn đề bài
Giả sử \(x⋮2\)
\(\Rightarrow\left|x-2y\right|⋮2\)
\(\Rightarrow\left|4y-5z\right|+\left|z-3x\right|\)lẻ(Vì 2011 lẻ)
Với \(z⋮2\)thì:
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|⋮2\\\left|z-3x\right|⋮2\end{cases}}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)\)
Với z ko chia hết cho 2 thì hay z lẻ
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|\equiv1\left(mod2\right)\\\left|z-3x\right|\equiv1\left(mod2\right)\end{cases}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)}\)
Trường hợp x lẻ chứng minh tương tự ta cũng ko tìm được giá trị nguyên của y,z
Vậy ko tồn tại các số nguyên x,y,z thỏa mãn đề bài(đpcm)
Ta có bổ đề sau:\(\left|x\right|+x\) luôn chẵn với mọi x nguyên
Cái này bạn xét x < 0;x=0 và x > 0 nha !
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\)
\(\Leftrightarrow\left|x-2y\right|+\left(x-2y\right)+\left|4y-5z\right|+\left(4y-5z\right)+\left|z-3x\right|+\left(z-3x\right)+2\left(x+y+z\right)\)
Ta thấy
\(\left|x+2y\right|+\left(x+2y\right)⋮2\)
\(\left|4y-5z\right|+\left(4y-5z\right)⋮2\)
\(\left|z-3x\right|+\left(z-3x\right)⋮2\)
\(2\left(x+y+z\right)⋮2\)
\(\Rightarrow VT⋮2\Rightarrow VP⋮2\) ( Vô lý )
=> ĐPCM
dễ ợt nhưng teo quên cách làm dồi hí hí
thôi đi,ở bài của ly cũng nói thế