K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2021

ĐKXĐ: ...

\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)

\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)

\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)

Thế xuống pt dưới:

\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)

\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)

Xét (1) với \(x\ge\dfrac{3}{2}\):

\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)

\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\) 

\(\Rightarrow\left(1\right)\) vô nghiệm

NV
21 tháng 7 2021

c.

\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
21 tháng 7 2021

a.

Đề bài ko chính xác, pt này ko giải được

b.

ĐKXĐ: \(x\ge-\dfrac{7}{2}\)

\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)

Đặt \(\sqrt{2x+7}=t\ge0\)

\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)

\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1+2\sqrt{2}\)

11 tháng 2 2022

bài này mình chưa giải dc triệt để ở cái cuối

\(2x^3-4x^2+3x-1=2x^3\left(2-y\right)\sqrt{3-2y}\) \(\left(y\le\dfrac{3}{2}\right)\)

\(\Leftrightarrow4x^3-8x^2+6x-2=2x^3\left(4-2y\right)\sqrt{3-2y}\left(1\right)\)

\(đặt:\sqrt{3-2y}=a\ge0\Rightarrow a^2+1=4-2y\)

\(\left(1\right)\Leftrightarrow4x^3-8x^2+6x-2=2x^3.\left(a^2+1\right)a\)

\(\Leftrightarrow4x^3-8x^2+6x-2-2x^3\left(a^2+1\right)a\)

\(\Leftrightarrow-2\left(xa-x+1\right)\left[\left(xa\right)^2+x^2a+2x^2-xa-2x+1\right]=0\)

\(\Leftrightarrow x.a-x+1=0\Leftrightarrow x\left(a-1\right)=-1\Leftrightarrow x=\dfrac{-1}{a-1}\)

\(\left(\sqrt{x\sqrt{3-2y}-\sqrt{x}}\right) ^2=x\sqrt{3-2y}-\sqrt{x}\)

\(=\dfrac{-a}{a-1}-\sqrt{\dfrac{-1}{a-1}}\)

\(\left(\sqrt{x\sqrt{3-2y}+2}+\sqrt{x+1}\right)=\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\)

\(\Rightarrow\left(\dfrac{-a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\left(\sqrt{\dfrac{-a}{a-1}+2}+\sqrt{\dfrac{a-2}{a-1}}\right)-4=0\)

\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right).2\sqrt{\dfrac{a-2}{a-1}}=4\)

\(\Leftrightarrow\left(-\dfrac{a}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{\dfrac{a-2}{a-1}}=2\)

\(\Leftrightarrow\left(-1+\dfrac{-1}{a-1}-\sqrt{-\dfrac{1}{a-1}}\right)\sqrt{1-\dfrac{1}{a-1}}=2\)(3)

\(đặt:1-\dfrac{1}{a-1}=u\Rightarrow\sqrt{-\dfrac{1}{a-1}}=\sqrt{u-1}\)

\(\left(3\right)\Leftrightarrow\left(u-2-\sqrt{u-1}\right)\sqrt{u}=2\)

bình phương lên tính được u

\(\Rightarrow u=.....\Rightarrow a\Rightarrow y=...\Rightarrow x=....\)

 

 

 

 

 

 

NV
12 tháng 2 2022

Với \(x=0\) không phải nghiệm

Với \(x>0\) chia 2 vế cho pt đầu cho \(x^3\)

\(\Rightarrow2-\dfrac{4}{x}+\dfrac{3}{x^2}-\dfrac{1}{x^3}=2\left(2-y\right)\sqrt{3-2y}\)

\(\Leftrightarrow1-\dfrac{1}{x}+\left(1-\dfrac{1}{x}\right)^3=\sqrt{3-2y}+\sqrt{\left(3-2y\right)^3}\)

Xét hàm \(f\left(t\right)=t+t^3\Rightarrow f'\left(t\right)=1+3t^2>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow1-\dfrac{1}{x}=\sqrt{3-2y}\)

Thế vào pt dưới:

\(\left(\sqrt{x\left(1-\dfrac{1}{x}\right)-\sqrt{x}}\right)^2\left(\sqrt{x\left(1-\dfrac{1}{x}\right)+2}+\sqrt{x+1}\right)=4\)

\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\left(\sqrt{x+1}+\sqrt{x+1}\right)=4\)

\(\Leftrightarrow\left(x-\sqrt{x}-1\right)\sqrt{x+1}=2\)

Phương trình này ko có nghiệm đẹp, chắc bạn ghi nhầm đề bài của pt dưới

9 tháng 12 2019

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!