Tìm các cặp số nguyên (x, y) thoả mãn:
a, /x/+/y/≤3
b, /x+5/+/y-2/≤4
c, /2x+1/+/y-4/≤3
d, /3x/+/y+5/≤4
Giúp mình với. Mình cảm ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$
$\Leftrightarrow x^4+x\vdots x^4+1$
$\Leftrightarrow x^4+1+x-1\vdots x^4+1$
$\Leftrightarrow x-1\vdots x^4+1$
Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$
Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$
Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$
$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)
Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$
$\Leftrightarrow x^4+x\leq 0$
$\Leftrightarrow x(x^3+1)\leq 0$
$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$
Với $x=-1$ thì $y=0$
Với $x=0$ thì $y=1$
Vậy..........
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)