Bài 1: Cho tam giác ABC gọi D là điểm nằm giữa B và C, qua D vẽ DE // AB ; DF // AC.
a) Chứng minh tứ giác AEDF là hình bình hành;
b) Khi nào thì hình bình hành AEDF trở thành: Hình thoi;Hình vuông?
Giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì AE//DF và DE//AF => AEDF là hình bình hành
Vậy AEDF là hình bình hành
b.ADEF là hình thoi <=> AD là phân giác góc BAC
ADEF là hình vuông <=> AEDF là hình thoi <=> AD là phân giác góc BAC
và A=90độ
Vậy...
Xét tứ giác EDCB có
A là trung điểm của đường chéo EC
A là trung điểm của đường chéo BD
Do đó: EDCB là hình bình hành
Xét ΔACM và ΔAEN có
\(\widehat{ACM}=\widehat{AEN}\)
AC=AE
\(\widehat{CAM}=\widehat{EAN}\)
Do đó: ΔACM=ΔAEN
Suy ra: MC=NE
Chú ý: BEDC là hình bình hành
Ta có: DEAN = DCAM (g - c - g) Þ NE = MC
a: Ta có: M và D đối xứng với nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE(2)
Từ (1) và (2) suy ra AD=AE
b: Ta có: ΔADM cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc DAM(1)
Ta có: ΔAEM cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc EAM(2)
Từ (1) và (2) suy ra \(\widehat{DAM}+\widehat{EAM}=2\cdot\widehat{A}=2x\)
hay \(\widehat{DAE}=2\cdot x\)