K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:
Gọi $D$ là giao điểm $MN, AE$

Vì $AE$ là trung tuyến ứng với cạnh huyền nên $AE=\frac{BC}{2}=EC$

$\Rightarrow EAC$ cân tại $E$

$\Rightarrow \widehat{DAN}=\widehat{EAC}=\widehat{ECA}=\widehat{HCA}$

Mặt khác:

Dễ thấy $AMHN$ là hình chữ nhật (do có 3 góc vuông)

$\Rightarrow \widehat{DNA}=\widehat{INA}=\widehat{IAN}=\widehat{HAC}$

Do đó:

$\widehat{DAN}+\widehat{DNA}=\widehat{HCA}+\widehat{HAC}=90^0$

$\Rightarrow \widehat{ADN}=90^0$

$\Rightarrow AE\perp MN$

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Hình vẽ:

a) Xét tứ giác AEMF có 

\(\widehat{AFM}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{FAE}=90^0\)(gt)

Do đó: AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AM=EF(Hai đường chéo của hình chữ nhật AFME)

b) Gọi O là giao điểm của AM và EF

Ta có: AMFE là hình chữ nhật(cmt)

nên Hai đường chéo AM và EF cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà O là giao điểm của AM và EF(gt)

nên O là trung điểm của AM; O là trung điểm của EF

Ta có: ΔAHM vuông tại H(gt)

mà HO là đường trung tuyến ứng với cạnh huyền AM(O là trung điểm của AM)

nên \(HO=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà AM=EF(cmt)

nên \(HO=\dfrac{EF}{2}\)

Xét ΔHFE có 

HO là đường trung tuyến ứng với cạnh EF(O là trung điểm của EF)

\(HO=\dfrac{EF}{2}\)(cmt)

Do đó: ΔHFE vuông tại H(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)